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Driving forces for new devices
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• ‘Beyond Moore: an approach 
seeking to achieve the best of 
both More Moore and More than 
Moore worlds, and the key to 
doing so is advanced 
heterogeneous integration.

• Hybrid bonding stacking being 
the most scalable 3D integration 
is a major enabler for More than 
Moore and will play a 
determinant role for Beyond 
CMOS developments

Going beyond the limits of integration

Emerging materials
Emerging architectures

New applications

J.-Q. Lu, FUTURE FAB 
International, Issue 41, 2012
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3D stacking using hybrid bonding

Addition of a 
dedicated BEOL level

Bonding at RT
+ anneal > 200°C

BSI process

Dedicated layers introduced to enable hybrid bonding

Photo-site array
► Dedicated technology,

sharply optimized for photo sensing

Low power processor
► Low noise analog and high speed, 

low power, digital imaging

Pixel BS dedicated technology
► Pixel with high dynamic & low noise

► High QE, including in NIR

Advanced Digital & Analog CMOS
► Digital with high density & low power

Massive performant and new functionalities booster for Image Sensor
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Hybrid bonding at ST

Cu
SiO2

1.44 µm pitch

Double damascene integration using Cu/SiO2 materials

Pad = Hybrid Bonding 
Metal (HBM)

Top 
wafer

Bottom 
wafer

Via = Hybrid Bonding 
Via (HBV)

Pad = Hybrid Bonding 
Metal (HBM)

Via = Hybrid Bonding 
Via (HBV)

Metal line 4

Metal line 7
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Challenging
Sub 1µm pitch 
achievement

• Using
different
integration at 
the hybrid
bonding 
interface

• Using
different
configuration 
for pad size 
reduction

Capability of high interconnection density
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0.7µm

Main demonstrations over the last 5 years

(1) J. Jourdon IEDM 2018
(2) Y. Kagawa EDTM 2019
(3) S.A- Chew ECTC 2022
(4) Y. Kagawa, IITC 2020
(5) Y. Ouyang IRPS 2021
(6) S.W- Kim ECTC 2020
(7) B. Ayoub EPTC 2022
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Reliability challenges using Cu/ SiO2 hybrid bonding?
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Could the hybrid bonding levels be 
considered as new metallization levels 

with specific weaknesses?

Is there any new concerns with pad 
width reduction under 1 µm?

Bonding interface 
robustness

Thermomechanical stress

Electromigration



Cu/SiO2 stability at the bonding 
interface 
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Hybrid bonding 
Interface

HBV

HBM

Cu

SiO2

0.2µm

Occurrence of Cu/SiO2 interfaces 
induced by the bonding equipment

Bonding interface robustness

• Methodology: from basic 1 metal level studies to 
electrical test vehicle

Thermo-mechanical stress

Electromigration



Thermal stability of the Cu/SiO2 interface

No atomic diffusion of Cu through the hybrid bonding interface under thermal stress

SiO2 80nm Deposited SiO2

Patterned Cu/SiO2

Cu PadSiO2

T
o
p

B
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tt
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m

Hybrid 
Bonding 
Interface

• Huge Cu/SiO2 interface 
delamination

• Huge diffusion of Cu into SiO2

Experiment: SiO2 grown directly on Cu pads

Case of hybrid bonding Cu/SiO2 (*)
• Very sharp Cu/SiO2 interface

• Traces of copper on the Si 
backsideCu Pad

80 nm 
SiO2

Hybrid 
Bonding 
Interface

TXRF

(*) B. Ayoub et al., Microelectronic Reliability, 2023, 114934
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High Temperature Storage tests

Top Comb Part

Bottom 

Comb 

Part

No reliability issue under thermal stress whatever the hybrid bonding pad width

(*) B. Ayoub et al., IEEE 24th Electronics Packaging Technology Conference (EPTC) 2022, 418
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Metal line 4
Hybrid 

Bonding 
Interface

Metal line 7 
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Metal line 4

Hybrid 
Bonding 
Interface

Metal line 7 

720nm

Applied to bonding pitch 1.44µm (*)

Pad 350 nmPad 350 nm Conditions:
1000h 175°CPad 720 nmPad 720 nm
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Stability under electrical stress
Study to detect potential ionic diffusion under electrical field

Triangular 
Voltage Sweep

Bias 
Temperature 

Stressing

200 °C200 °CTemperature

±15 V2.67 MV/cmBias

-Up to 30 minDuration

125 mV/s-Ramp rate

-15 → +15 → -
15 V

-
Sweep 

direction

Top view

Comb 1 Serpentine Comb 2

Cross 
Plane

Metal Line 4

Metal Line 7

T
o

p
B

o
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o

m

Comb2

Serpentine

Hybrid 
Bonding 
Interface

Sectional view

Hybrid Bonding Metal 

Metal Line 4 

Metal Line 7

Comb1

No Cu ionic diffusion through the hybrid bonding interface 

BTS/ TVS studies on samples after HTS 4000h (*)

No peak

(*) B. Ayoub et al., Microelectronic Reliability, 2023, 114934
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Composition of Cu/SiO2 bonding interface

Cu

1
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2: Cu/SiO2 Interface

1: Inside Cu Pads
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3.3 nm

5 10 15 20 25

Cu2O

Metallic Cu

Distance along the line scan (from SiO2 to Cu pads) in nm

Cu-L2,3 ionization edge 

Presence of self-formed ~3nm Cu2O at the Cu/SiO2 bonding interface that could act as a 
diffusion barrier

EELS analysis with probe 1 nm (*)

(*) B. Ayoub et al., Microelectronic Reliability, 2023, 114934.
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Impact of any Cu diffusion on dielectric lifetime

E-model

�-model

1/E-model

Experimental 
Results

T = 170°C

T = 195°C

T = 155°C

Electric Field (MV/cm)

6
3
.2

%
 T

T
F

 (
s
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• 1/E model for hybrid bonding while √ E is obtained for other BEoL levels
• Confirms that the role of Cu in TDDB is negligible 

Time Dependent Dielectric Breakdown (*)

Top view

Comb 1 Serpentine Comb 2

Cross 
Plane

Metal Line 4

Metal Line 7

T
o

p
B

o
tt
o

m

Comb2

Serpentine

Hybrid 
Bonding 
Interface

Sectional view

Hybrid Bonding Metal 

Metal Line 4

Metal Line 7 

Comb1

(*) B. Ayoub et al., IEEE International Reliability Physics Symposium (IRPS) 2022

1/E dependency is attributed to the effective barrier characteristics
of the Cu oxide layer 

Slide 13 of 28



Summary on hybrid bonding interface stability
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No atomic or ionic Cu diffusion into SiO2 under thermal stress

No reliability issue under thermal stress

TTF depency to electrical field confirming no Cu assisted breakdown

►A self-formed copper oxide diffusion barrier at the Cu/SiO2 interface



Thermomechanical stress

Bonding interface robustness

Thermomechanical stress

• Potential source of failures

• Thermal cycling Tests

Electromigration
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grain 

limit

Interface mechanical stability

Potential interface delamination under thermomechanical stress with potential different pad 
reconstruction depending on the pad width

top

bottom

SiO2-SiO2

interface

Bonding void
at Cu-Cu
interface

Cu-Cu interface reconstruction (*)

ML4

ML7

top

bottom

zoom

(*) B. Ayoub et al., IEEE 22nd Electronics Packaging Technology Conference (EPTC) 2020
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(**) B. Ayoub et al., Microelectronic Engineering 2022, 261, 111809

Cu pad Microstructure by Laue microdiffraction (**)



Stress at the hybrid bonding level

Stress at the hybrid bonding level is modified with pad width : potential impact on the 
robustness to thermomechanical stress

Thermomechanical simulation for the bonding pad level (*)

(*) J. Jourdon, International Electron Devices Meeting (IEDM) 2018
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No impact of hybrid bonding pad width reduction under Thermal Cycling Tests

Thermal Cycling Tests

Top Comb Part

Bottom 

Comb 

Part

Applied to bonding pitch 1.44µm (*)

Pad 350 nmPad 350 nm

(*) B. Ayoub et al., IEEE 24th Electronics Packaging Technology Conference (EPTC) 2022, 418

Conditions: 
-65°C +150°C

500 cycles
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Conditions: 
-65°C +150°C

500 cycles
Pad 720 nmPad 720 nm
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Metal line 4
Hybrid 

Bonding 
Interface

Metal line 7 

350nm
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Bonding 
Interface

Metal line 7 

720nm

(*) B. Ayoub et al., IEEE 22nd Electronics Packaging Technology Conference (EPTC) 2020



Summary on robustness to thermomechanical stress
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The evolution of the Cu pad microstructure with Cu pad size could cause differences on Cu-Cu pad 
reconstruction

The results of the thermomechanical simulations show higher stress for smaller pitches

► However hybrid Level down to 350nm Cu pad width is reliable towards thermomechanical stress



Electromigration

Bonding interface robustness

• Methodology: from basic 1 metal level studies to 
electrical test vehicle

Thermomechanical stress

Electromigration
Matter displacement activated by 

the application of temperature
and electrical current

Anode
+

Cathode
-



NIST structures

Electromigration test structures

V+

I+

V-

I-

HBM Top

HBM Bot

HBV Top

HBV Bot

ML4

ML7

Metal line width

ML width

Reservoir length
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Lifetime is on-line with consumer specifications but identification of a modification for the 
failure localization with hybrid bonding pad width reduction

Electromigration tests 

Pad width = 3.6 µm Pad width <2 µm

(*) S. Moreau et al., IEEE International Reliability Physics Symposium (IRPS) 2023 

1

2
3

4

Pad width =1.7 µm Pad width = 720nm
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Conclusion



• Cu/SiO2 hybrid bonding level is reliable for consumer applications

• Robustness demonstrated as a matter of interface stability, thermomechanical stress and electromigration

• Non-typical behavior compared to a standard back-end of line

• Barrier at Cu/SiO2 is achieved with self formed Cu2O

• Modified TTF model with 1/E relation

• Contribution of the hybrid bonding interface as potential failure mode under electromigration stress

• Hybrid bonding with sub-1µm pad still leads to reliable devices

• No impact of pad microstructure modification

• Lifetime is not modified by the electromigration mechanism

Conclusion

Hybrid bonding stacking is mature for: 
• Very high interconnection by pitch reduction
• Heterogeneous integration
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