

Indentation-induced delamination and adhesion work evaluation at elevated temperature in industrial semiconductors

Speaker: PJ Wei 24 April, 2023

Outlines

- Basic Mechanisms of Adhesion Measurements and Correlation between Results Collected by Different Techniques
- Applications of thin film adhesion measurement at Elevated
 Temperature

Basic Mechanisms and Methodology Correlation

Interface Bonding Issues of Adhesion in Thin Film Industries

xSol[®] - Heating, Cooling, Humidity Heating: 800°C • Cooling: -120°C • Humidity: 10-75% RH

https://www.researchgate.net

Overview of Adhesion Metrology Techniques Measurements for Interfacial Bonding

- special sample preparation
- Low spatial resolution
- Ex-situ measurement

Nano indenter's Advantages:

- Direct measurements
 Nanoindentation or nanoscratch tests can directly
 performed on product surface.
 No sample preparations are needed.
- 2. High spatial resolution Nanoindentations or nanoscratches are at sub-micron or micron scale.

Scratch-Induced Cohesion and Adhesion on Low-k Film

Scratch-Induced Cohesion and Adhesion of Low-k Film

Indentation-Induced Cohesion and Adhesion on Hard Coating

In-situ Nano-Indentation in SEM

Indentation-Induced Cohesion and Adhesion Check of Post- SPM Imaging

Correlation of Critical Load Results

Sample		Scratch	Method	Indentation Method		
		Ave (uN)	Std (uN)	Ave (uN)	Std (uN)	
С		696.2	38.7	7231.2	573.5	
D)	792.5	42.2	7702.0	715.7	
A	L.	433.3	19.9	4173.5	419.4	
В	B 510.7		22.9	5249.3	464.3	

High Speed Indentation with Pop-in Signal

How it works:

- Approach routine makes contact with the sample
- Electrostatic actuation to perform experiment and withdraw
- Between indents, piezo is moved to next position

TI-980: up to 6 indents/s

Indentation-Induced Delamination Using XPM

Post-SPM image after XPM

Cube corner tip Applied load: 9mN Array: 5x5 @ 30s Spacing: 15um

Challenges at Elevated Temperature

XPM Indentation at Elevated Temperature

xSol heating on TI980

XPM at high temperature

© 2021 Bruker

XPM Results at Different Temperature Levels Low-k Films on Silicon

Sample 2

BRUKER

Comparison of Critical Load Results at All Temperature Levels Low-k Films on Silicon

Wafer 2	20°C	100°C	200°C	300°C	
ave (uN)	431	393	371	348	
std (uN)	45	31	29	47	
CV	10.4%	7.9%	7.8%	13.5%	

Wafer 6	20°C	100°C	200°C	300°C	
ave (uN)	349	319	308	286	
std (uN)	15	21	20	18	
CV	4.3%	6.6%	6.5%	6.3%	

High Load Indentations at Elevated Temperature Polymer Film on Copper

© 2021 Bruker

Adhesion Work Calculation at Temperature Levels Polymer Film on Copper

Post Optical image

	V	H (GPa)	T (°C)	E (GPa)	t (nm)	L _{crit} (uN)	a (um)	r (um)	G (J/m ²)
$(1/r) \cdot (1-\nu)^2$	0.3	0.49	35	6.02	10000	115218.2	30.3	11.5	6.81
	0.3	0.39	150	4.69	10000	84091.5	40.7	16.0	6.04
	0.3	0.11	215	1.59	10000	68276.1	41.9	17.4	1.68

L.G. Rosenfeld, et al., Journal of Applied Physics 1990, 67(7), 3291

Poisson ratio is assumed to be 0.3 at all temperature levels.

 $\mathbf{G} = \frac{0.627 \cdot H^2 \cdot t \cdot (1 - \nu^2)}{-\tau} \cdot \mathbf{G}$

Adhesion Work Calculation at Temperature Levels Polymer Film on Copper

Take Away

- special sample preparation
- Low spatial resolution
- Ex-situ measurement

pressure blister test

拼

laser blister test

fatigue friction test

Thank you!

PJ Wei Pal-Jen.Wei@bruker.com

Innovation with Integrity